Расчет теплового насоса воздух вода

Содержание
  1. Тепловой насос для отопления дома: принцип работы и примеры расчета
  2. Тепловой насос. Конструкция обогрева дома
  3. Принцип работы тепловых насосов
  4. Виды конструкций тепловых насосов
  5. Работа теплового насоса при работе по схеме «грунт-вода»
  6. Горизонтальный вариант
  7. Вертикальный вариант
  8. Комбинированный вариант
  9. Расчет горизонтального коллектора теплового насоса
  10. Пример расчета теплового насоса
  11. Расчет коллектора
  12. Расчет вертикального коллектора
  13. Расчет теплового насоса воздух-вода на отопление и ГВС просто и быстро
  14. Особенности работы ТН воздух-вода на отопление
  15. В чем разница расчетов на отопление и гвс?
  16. Расчет теплового насоса воздух-вода на ГВС
  17. Расчет теплового насоса воздух-вода для отопления
  18. Общий расчет и нюансы
  19. Как подобрать тепловой насос воздух-вода?
  20. Защититесь от форс-мажора
  21. Тепловой насос воздух-вода для отопления дома
  22. Виды тепловых насосов
  23. Принцип работы насоса воздух-вода
  24. Инверторные тепловые насосы
  25. Работа системы отопления от такого насоса
  26. Режим подачи холодного воздуха
  27. Преимущества и недостатки
  28. Популярные изготовители, обзор цен
  29. Подбираем тепловой насос воздух-вода – как сделать расчет и подобрать марку
  30. Как работает тепловой насос системы воздух-вода
  31. Как подобрать тепловой отопительный насос воздух-вода
  32. Как сделать расчет необходимой мощности ТН воздух-вода
  33. Производители тепловых насосов отопления воздух-вода
  34. Стоимость установки ТН воздух-вода
  35. Рекомендации и правила монтажа ТН воздух-вода
  36. На сколько выгоден тепловой насос системы воздух-вода

Тепловой насос для отопления дома: принцип работы и примеры расчета

Расчет теплового насоса воздух вода

Давно и весьма успешно тепловые насосы используются в бытовых и промышленных холодильниках и кондиционерах.

Сегодня эти устройства стали применять и для выполнения функции противоположного характера – обогрева жилища в период холодов.

Давайте же посмотрим, как используются тепловые насосы для отопления частных домов и что нужно знать, чтобы правильно рассчитать все его компоненты.

Тепловой насос. Конструкция обогрева дома

В системе отопления дома тепловой насос (ТН) играет ту же роль, что и котел, то есть является теплогенератором.

Разница состоит только в том, что котел сжигает топливо, а ТН «выкачивает» тепловую энергию из источников, которые, на первый взгляд, совсем ею не богаты.

Грунт и речная вода с температурой 5 – 7 градусов, или даже морозный зимний воздух, температура которого вообще оказалась ниже нуля.

Такие источники называются низкопотенциальными, и хотя с понятием тепла они никак не ассоциируются, ТН умудряется «выжать» из них внушительный объем живительной энергии. К этому следует добавить тепло, выделяемое электродвигателем компрессора ТН: здесь, в отличие от холодильника и кондиционера, оно не пропадает даром.

В остальном система отопления на базе ТН ничем не отличается от обычной: используется теплоноситель – вода или воздух, который нагревается, протекая через теплообменник, а затем разносит тепло по всему дому.

Циркуляцию обеспечивает насос (для водяного отопления) или вентилятор (для воздушного).

Точно также, как и традиционный теплогенератор, ТН можно одновременно подключить к контуру горячего водоснабжения (ГВС) как с накопительной емкостью (бойлером), так и без нее.

Принцип работы тепловых насосов

В любом ТН имеется рабочая среда, именуемая хладагентом. Обычно в этом качестве выступает фреон, реже – аммиак. Само устройство состоит всего из трех компонентов:

  • испаритель;
  • компрессор;
  • конденсатор.

Испаритель и конденсатор – это два резервуара, имеющие вид длинных изогнутых трубок – змеевиков. Конденсатор одним концом присоединяется к выходному патрубку компрессора, а испаритель – ко входному.

Концы змеевиков стыкуются и в месте соединения между ними устанавливается редукционный клапан.

Испаритель контактирует – непосредственно или косвенно – со средой-источником, а конденсатор – с системой отопления или ГВС.

Принцип работы теплового насоса

Работа ТН основана на взаимозависимости объема, давления и температуры газа. Вот что происходит внутри агрегата:

  1. Аммиак, фреон или другой хладагент, двигаясь по испарителю, нагревается от среды-источника, допустим, до температуры +5 градусов.
  2. Пройдя испаритель, газ достигает компрессора, который перекачивает его в конденсатор.
  3. Нагнетаемый компрессором хладагент удерживается в конденсаторе редукционным клапаном, поэтому его давление здесь выше, чем в испарителе. Как известно, с ростом давления температура любого газа увеличивается. Именно это происходит с хладагентом – он разогревается до 60 – 70 градусов. Поскольку конденсатор омывается циркулирующим в системе отопления теплоносителем, последний также нагревается.
  4. Через редукционный клапан хладагент небольшими порциями сбрасывается в испаритель, где его давление снова падает. Газ расширяется и остывает, а поскольку часть внутренней энергии была потеряна им в результате теплообмена на предыдущем этапе, его температура опускается ниже изначальных +5 градусов. Следуя по испарителю, он снова нагревается, далее закачивается в конденсатор компрессором – и так по кругу. По-научному этот процесс называется циклом Карно.

особенность ТН состоит в том, что тепловая энергия берется из окружающей среды буквально даром. Правда, для ее добычи необходимо потратить некоторое количество электроэнергии (для компрессора и циркуляционного насоса/вентилятора).

Но ТН все-равно остается очень выгодным: за каждый потраченный кВт*ч электроэнергии удается получить от 3 до 5 кВт*ч тепла.

Виды конструкций тепловых насосов

Тип ТН принято обозначать словосочетанием, указывающим на среду-источник и теплоноситель системы отопления.

Существуют следующие разновидности:

  • ТН «воздух – воздух»;
  • ТН «воздух – вода»;
  • ТН «грунт – вода»;
  • ТН «вода – вода».

Самый первый вариант – это обычная сплит-система, работающая в режиме обогрева. Испаритель монтируется на улице, а внутри дома устанавливается блок с конденсатором. Последний обдувается вентилятором, благодаря чему в помещение подается теплая воздушная масса.

Если такую систему оснастить специальным теплообменником с патрубками, получится ТН типа «воздух – вода». Он подключается к водяной системе отопления.

Испаритель ТН типа «воздух – воздух» или «воздух – вода» можно разместить не на улице, а в канале вытяжной вентиляции (она должна быть принудительной). В этом случае эффективность ТН будет увеличена в несколько раз.

Теплонасосы типа «вода – вода» и «грунт – вода» для отбора тепла используют так называемый наружный теплообменник или, как его еще называют, коллектор.

Принципиальная схема работы теплового насоса

Это длинная закольцованная труба, как правило, пластиковая, по которой циркулирует жидкая среда, омывающая испаритель. Обе разновидности ТН представляют собой одно и то же устройство: в одном случае коллектор погружается на дно поверхностного водоема, а во втором – в грунт. Конденсатор такого ТН расположен в теплообменнике, подключаемом к системе водяного отопления.

Подключение ТН по схеме «вода – вода» является гораздо менее трудоемким, чем «грунт – вода», поскольку отпадает необходимость в проведении земляных работ. На дно водоема труба укладывается в виде спирали. Разумеется, для данной схемы подойдет только такой водоем, который зимой не промерзает до дна.

Работа теплового насоса при работе по схеме «грунт-вода»

Укладку коллектора в грунт можно произвести тремя способами.

Горизонтальный вариант

Трубы укладываются в траншеи «змейкой» на глубину, превышающую глубину промерзания грунта (в среднем – от 1 до 1,5 м).

Для такого коллектора потребуется участок земли достаточно большой площади, но зато его может построить любой домовладелец – никаких навыков, кроме умения работать лопатой, не понадобится.

Следует, правда, учесть, что сооружение теплообменника ручным способом – довольно трудоемкий процесс.

Вертикальный вариант

Трубы коллектора в виде петель, имеющих форму литеры «U», погружаются в скважины глубиной от 20 до 100 м. При необходимости можно построить несколько таких скважин. После установки труб скважины заливают цементным раствором.

Достоинство вертикального коллектора состоит в том, что для его строительства нужен совсем небольшой участок. Однако, пробурить скважины глубиной более 20 м самостоятельно нет никакой возможности – придется нанимать бригаду бурильщиков.

Комбинированный вариант

Этот коллектор можно считать разновидностью горизонтального, но для его строительства потребуется гораздо меньше места.

На участке выкапывается круглый колодец глубиной от 2-х м.

Трубы теплообменника укладываются спиралью, так что контур представляет собой как бы вертикально установленную пружину.

По завершении монтажных работ колодец засыпают. Как и в случае с горизонтальным теплообменником, весь необходимый объем работ можно произвести своими руками.

Коллектор заполняется антифризом – тосолом или раствором этиленгликоля. Для обеспечения его циркуляции в контур врезается специальный насос. Вобрав в себя тепло грунта, антифриз поступает к испарителю, где происходит теплообмен между ним и хладагентом.

Следует учесть, что неограниченный отбор тепла из грунта, особенно при вертикальном расположении коллектора, может привести к нежелательным последствиям для геологии и экологии участка. Поэтому в летний период ТН типа «грунт – вода» весьма желательно эксплуатировать в реверсивном режиме – кондиционирование.

Расчет горизонтального коллектора теплового насоса

Эффективность горизонтального коллектора зависит от температуры среды, в которую он погружен, ее теплопроводности, а также площади контакта с поверхностью трубы. Методика расчета достаточно сложна, поэтому в большинстве случаев пользуются усредненными данными.

Считается, что каждый метр теплообменника обеспечивает ТН следующую тепловую мощность:

  • 10 Вт – при заглублении в сухой песчаный или каменистый грунт;
  • 20 Вт – в сухом глинистом грунте;
  • 25 Вт – во влажном глинистом грунте;
  • 35 Вт – в очень сыром глинистом грунте.

Таким образом, для расчета длины коллектора (L) следует потребную тепловую мощность (Q) разделить на теплотворную способность грунта (p):

L = Q / p.

Приведенные значения можно считать действительными только при соблюдении следующих условий:

  • Участок земли над коллектором не застроен, не затенен и не засажен деревьями или кустами.
  • Расстояние между соседними витками спирали или участками «змейки» составляет не менее 0,7 м.

При расчете коллектора следует учитывать, что температура грунта после первого года эксплуатации понижается на несколько градусов.

Пример расчета теплового насоса

Подберем ТН для системы отопления одноэтажного дома общей площадью 70 кв.

м со стандартной высотой потолка (2,5 м), рациональной архитектурой и теплоизоляцией ограждающих конструкций, соответствующей требованиям современных строительных норм. На обогрев 1-го кв.

м такого объекта по общепринятым нормам приходится тратить 100 Вт тепла. Таким образом, для отопления всего дома понадобится:

Q = 70 х 100 = 7000 Вт = 7 кВт тепловой энергии.

Выбираем тепловой насос марки «ТеплоДаром» (модель L-024-WLC) с тепловой мощностью W = 7,7 кВт. Компрессор агрегата потребляет N = 2,5 кВт электроэнергии.

Расчет коллектора

Грунт на отведенном под строительство коллектора участке – глинистый, уровень грунтовых вод высокий (принимаем теплотворную способность p = 35 Вт/м).

Мощность коллектора определяем по формуле:

Qk = W – N = 7,7 – 2,5 = 5,2 кВт.

Определяем длину трубы коллектора:

L = 5200 / 35 = 148.5 м (приблизительно).

Исходя из того факта, что укладывать контур длиной более 100 м нерационально из-за чрезмерно высокого гидравлического сопротивления, принимаем следующее: коллектор теплового насоса будет состоять из двух контуров – длиной 100 м и 50 м.

Площадь участка, который необходимо будет отвести под коллектор, определим по формуле:

S = L x A,

Где А – шаг между соседними участками контура. Принимаем: А = 0,8 м.

Тогда S = 150 x 0.8 = 120 кв. м.

Расчет вертикального коллектора

На глубине свыше 15 м температура грунта стабильно держится на отметке +10 градусов круглый год. Поэтому эффективность вертикального коллектора является более высокой – в среднем с метрового участка удается снимать до 50 Вт тепла. Для расчета длины теплообменника также необходимо учитывать тип среды. Так, с 1-го метра трубы удается получить такую тепловую мощность:

  • 20 Вт – при погружении в осадочный грунт (сухой);
  • 50 Вт – в каменистом либо влажном осадочном грунте;
  • 70 Вт – твердые породы (камень);
  • 80 Вт – подземные воды.

Применение вертикального зонда для теплового насоса

При строительстве скважин следует соблюдать условие: расстояние между ними должно составлять не менее 5 м.

Для работы теплового насоса из вышеприведенного примера понадобится коллектор длиной L = 5200 / 50 = 140 м.

Следовательно, для обустройства коллектора потребуется пробурить две скважины глубиной 70 м. В каждой из них нужно будет установить по две U-образные петли, для чего необходимо будет закупить 4х140 = 560 м труб.

Источник: https://microklimat.pro/otopitelnoe-oborudovanie/otopitelnye-pribory/teplovoj-nasos-dlya-otopleniya-doma.html

Расчет теплового насоса воздух-вода на отопление и ГВС просто и быстро

Расчет теплового насоса воздух вода

Расчет теплового насоса воздух-вода нужно выполнять с умом, чтобы потом не кусать локти. В отличие от грунта и воды, воздух более подвержен колебаниям температуры на протяжении одних суток и целого года.

Из этой публикации вы узнаете, как это правильно сделать, с какими проблемами вы сможете столкнуться. Правильно расчитать мощность теплового насоса можно выполнить самостоятельно, если воспользоваться нашими рекомендациями.

Особенности работы ТН воздух-вода на отопление

Воздух – весьма непостоянная среда. В течение суток его температура может падать на 10-15 градусов, а при резких сменах погоды и более. Многие допускают одну и ту же ошибку – делают расчет мощности теплового насоса для отопления дома на основании средней температуры. А после удивляются, что потребление энергии выше, чем заявил производитель. Поясним на наглядном примере.

Допустим, вам нужно поддерживать в доме температуру +20, а на улице днем -5, а ночью -15 градусов. Как мы видим, днем придется работать с разницей температур 25, а ночью – 35 градусов.

Казалось бы, перепад составляет всего 10 градусов или около 40% и потребление электроэнергии должно вырасти ровно настолько. Но это не так.

Принцип работы воздушного теплового насоса построен так, что его COP (КПД) меняется не по прямой зависимости. И получится, что ночью он будет потреблять не на 40%, а на 45-50% больше электроэнергии.

Из иллюстрации видно, что COP напрямую зависит от температуры наружного воздуха и температуры, до которой нужно нагреть теплоноситель (в нашем случае — воду).

Поэтому при расчете мощности воздушного теплового насоса стоит учитывать не только температуры, но и колебания COP (КПД теплового насоса).

Причем в долгосрочной перспективе это немаловажно, ведь в отопительный сезон темное время суток длится до 15 часов.

В чем разница расчетов на отопление и гвс?

Расходы на горячее водоснабжение и отопление дома несколько отличаются. Если вас интересует не отопление, а ГВС, то расчет теплового насоса воздух-вода нужно производить исходя из того, когда используется больше воды. Ведь при отоплении дома вам нужно подогревать теплоноситель постоянно, а горячую воду вы потребляете не всегда.

Обычно пики расхода приходятся на утро и вечер, а в это время суток температура на улице отличается. Если к вечеру воздух прогревается за день, то утром он максимально холодный и успел остыть за ночь. Посчитайте, сколько горячей воды уходит у вас утром и вечером, сопоставьте эти цифры.

Еще один важный момент – температура входящей воды. Она тоже может колебаться в зависимости от погоды, особенно если трубы водопровода проложены неглубоко. Если их глубина залегания больше метра – этот момент можно опустить, колебания будут невелики.

Температура воды в трубах водопровода зависит от его длины и глубины залегания.

Если использовать тепловой насос для отопления дома, его расход мощности на обогрев здания будет больше, чем на горячую воду. Хотя при общей калькуляции для точности расчетов стоит учитывать и его.

Расчет теплового насоса воздух-вода на ГВС

Теперь приступим к прямым расчетам. Для этого вам нужно знать следующее:

  • Температура входящей воды;
  • Расход горячей воды утром и вечером;
  • Среднюю температуру на улице утром и вечером;
  • Коэффициент COP (КПД) теплового насоса.

Средние температуры узнать несложно – на многих сайтах, предлагающих прогноз погоды, можно с большой точностью узнать средние колебания в вашем регионе и даже отдельном городе. COP теплового насоса при разных температурах должен указывать производитель в сопроводительной документации.

Для точности, подсчеты будем делать отдельно, для утреннего и вечернего времени. В идеале расчет теплового насоса воздух-вода стоит делать отдельно для каждого месяца, но никаких принципиальных отличий у нас не будет. Просто придется повторить процесс трижды, подставляя разные значения.

Для подсчета расхода электроэнергии нужны три значения, а именно:

∆T – разница температуры входящей воды и требуемой. Обычно нормальный уровень нагрева горячей воды +45 — +55 градусов.
V – объем расхода воды в литрах.
K – COP (КПД) теплового насоса при средней температуре воздуха на улице.

Формула расчета выглядит следующим образом:

∆T х V / K х 1,16.

Например, нам нужно 200 литров воды подогреть от +5 до +45 градусов, когда COP теплового насоса равен 4. Теперь подставим цифры в формулу и получим результат:

40 х 200 / 4 х 1,16 = 2320.

Таким же образом подсчитайте энергопотребление для другого времени суток с пиковым расходом, просуммируйте цифры и умножьте на количество дней в месяце. Сделайте расчет для каждого месяца и получите количество электроэнергии, нужное для ГВС с помощью теплового насоса.

Расчет теплового насоса воздух-вода для отопления

При обогреве дома подсчеты нужно делать иначе. Здесь не имеет смысла считать расход воды, но большую роль играют теплопотери здания. Для их подсчета можно использовать онлайн-калькулятор, например: //dokadoma.com/calc/teplo или //teplo-info.com/otoplenie/raschet_teplopoter_online.

Как в случае с расчетами на горячую воду, лучше сегментировать данные. Сделайте расчет на темное и светлое время суток, для каждого месяца отопительного сезона отдельно. Полученные данные это то количество тепла, которое должен отдавать тепловой насос.

Далее разделите полученные данные на коэффициент COP для каждого времени суток отдельно. Так вы получите количество электроэнергии, нужное для того, чтобы тепловой насос работал в штатном режиме.

Общий расчет и нюансы

Сложив расход электроэнергии на отопление и горячее водоснабжение, мы получим общие затраты на работу теплового насоса. Но остаются два нюанса, а именно:

  • Производители тепловых насосов часто завышают данные. Например, они не учитывают затраты на работу помпы, которая прокачивает воду в системе отопления. Иногда график зависимости COP не соответствует действительности.
  • В то время когда горячая вода не используется, она находится в баке-накопителе и постепенно остывает. Тепловой насос будет поддерживать ее температуру, на что также уходит электроэнергия.

Поэтому прибавьте к расчетной мощности еще 5-10%.

Вода в таком баке-накопителе остывает медленно, но тепловой насос тратит энергию для ее подогрева.

Как подобрать тепловой насос воздух-вода?

Как мы видим, расчет теплового насоса воздух-вода сильно зависит от COP. Соответственно, чем выше этот коэффициент, тем меньше расходы на отопление и ГВС. Но оборудование с хорошими показателями стоит немало, поэтому лучше поискать золотую середину.

Принцип работы теплового насоса воздух вода таков, что его КПД сильно зависит от температуры воздуха. В некоторых регионах и в разное время года она существенно отличается днем и ночью. Это нужно учитывать.

Когда вы получили цифры по потерям тепла на отопление и горячую воду, просчитайте расход на потребление для разных моделей и производителей тепловых насосов. Сравнив эти расчеты и стоимость оборудования, вы сможете выбрать оптимальный вариант.

Большую роль играет мощность насоса – чем больше разница между его максимальной производительностью и потреблением, тем дольше он прослужит. Нередко у более мощных моделей одной серии коэффициент COP выше, чем у менее производительных.

При выборе поставщика подсчитайте окупаемость оборудования – за какое время расходы на приобретение покроются за счет экономии. Это немаловажный фактор.

Защититесь от форс-мажора

Тепловой насос выгоден и удобен в использовании, но это не панацея. Он не поможет если:

  • Вышел из строя сам тепловой насос;
  • Отключилось электричество;
  • Наступили морозы, не типичные для климата вашего региона.

В таких случаях тепловой насос бесполезен. Вы можете остаться без отопления на долгий срок. Первое время дом будет держать тепло, но со временем будет остывать. На такой случай нужно иметь резервный источник для отопления и подогрева воды.

Ели у вас проведен газ – обязательно установите газовый котел. Если нет – спасет твердотопливный. Котлы могут использоваться в качестве резерва или для догрева воды. Все зависит от типа подключения. В первом случае оно параллельное, во втором – последовательное.

Произвести расчет теплового насоса воздух-вода не так сложно, как кажется. И чем точнее вы это сделаете, тем лучше сможете подобрать подходящую модель. В этом случае нелишне потратить несколько часов своего времени, но быть уверенным в том, что все сделали правильно, ведь тепловой насос – такое оборудование, которое служит не один год.

Не забудьте поделиться публикацией в соцсетях!

Источник: https://VTeple.xyz/teplovoy-nasos-vozduh-voda-raschet-moshhnosti-i-kpd/

Тепловой насос воздух-вода для отопления дома

Расчет теплового насоса воздух вода

Воздушные тепловые насосы относятся к категории современного оборудования, использующего в работе альтернативные источники энергии. Источником тепла для них является окружающая нас атмосфера.

Расходуя 1 кВт электроэнергии при помощи этих установок можно получить 4 кВт тепловой энергии.

При этом они абсолютно безопасны экологически и не требуют сжигания топлива.

Важно! Если Вы хотите использовать эту систему в качестве альтернативы газовому отоплению, учтите, что теплотворность 1 кВт электроэнергии равна теплу, вырабатываемому 0.11 м3 природного газа. Более подробно о количестве энергии, выделяемой различными материалами, можно посмотреть в этой таблице.

Виды тепловых насосов

Существуют два вида установок. В одном тепловая энергия атмосферного воздуха передается для нагрева жидкого теплоносителя в системе отопления и горячей воды для хозяйственных нужд. В другом случае нагревается непосредственно воздух внутри помещения, без возможности нагрева горячей воды, это принцип называется воздух-воздух.

Кроме атмосферных существуют геотермальные и гидротермальные тепловые насосы. В их работе тепло отбирается из пробуренной скважины или водоема. Однако дополнительные расходы, связанные с бурением, защитой от коррозии, обеспечением электробезопасности и заиливанием, существенно усложняют монтаж и увеличивают сумму капитальных затрат.

Системы тепловых насосов воздух-вода являются самым оптимальным вариантом по надежности, уровню комфорта и стоимости. При этом имеют большой эксплуатационный срок.

Принцип работы насоса воздух-вода

Как уже было сказано, основным источником тепловой энергии для установок этого типа является атмосферный воздух.

В принципиальной основе работы воздушных насосов лежит физическое свойство жидкостей к поглощению и отдаче тепла во время фазового перехода из жидкого состояния в газообразное, и обратно.

В результате смены состояния выделяется температура. Система работает по принципу холодильника наоборот.

Для эффективного использования этих свойств жидкости легкокипящий хладагент (фреон, хладон) циркулирует по замкнутому контуру в конструкцию которого входят:

  • компрессор с электроприводом;
  • обдуваемый вентилятором испаритель;
  • дроссельный (расширительный) клапан;
  • пластинчатый теплообменник;
  • медные или металлопластиковые циркуляционные трубки, соединяющие основные элементы схемы.

Движение хладагента по контуру осуществляется благодаря давлению, развиваемому компрессором. Для снижения тепловых потерь трубы покрываются теплоизоляционным слоем из искусственного каучука или вспененного полиэтилена с защитным металлизированным покрытием. В качестве хладагента используют хладон или фреон, способный закипать при отрицательной температуре и не замерзающий до -40°C.

Весь процесс работы состоит из следующих последовательных циклов:

  1. В радиаторе испарителя находится жидкий хладагент, температура которого ниже, чем у наружного воздуха. Во время активного обдува радиатора тепловая энергия от низко потенциального воздуха передается хладону, который закипает и переходит в газообразное состояние. При этом его температура повышается.
  2. Подогретый газ поступает в компрессор, где в процессе сжатия еще более нагревается.
  3. В сжатом и разогретом состоянии пары хладагента подаются в пластинчатый теплообменник, где по второму контуру циркулирует теплоноситель системы отопления. Поскольку температура теплоносителя значительно ниже, чем у разогретого газа, фреон активно конденсируется на пластинах теплообменника, отдавая тепло в систему отопления.
  4. Охлажденная парожидкостная смесь поступает на дроссельный клапан, который пропускает к испарителю только охлажденный жидкий хладагент с низким давлением. После чего весь цикл повторяется.

Для увеличения эффективности теплоотдачи трубки на испарителя навито спиральное оребрение. Расчет системы отопления, выбор циркуляционных насосов и другого оборудования должен учитывать гидравлическое сопротивление и коэффициент теплопередачи пластинчатого теплообменника установки.

Инверторные тепловые насосы

Наличие инвертора в составе установки позволяет обеспечить плавный пуск оборудования и автоматическое регулирование режимов в зависимости от температуры наружного воздуха. Это позволяет максимально повысить эффективность работы теплового насоса за счет:

  • достижения КПД на уровне 95-98%;
  • снижения потребления энергии на 20-25%;
  • минимизации нагрузок на электрическую сеть;
  • увеличения сроков эксплуатации установки.

В результате температура внутри помещений стабильно поддерживается на одном уровне, не зависимо от изменения погоды. При этом наличие инвертора в комплекте с автоматизированным блоком управления обеспечит не только зимний обогрев, но и подачу охлажденного воздуха летом при жаркой погоде.

В то же время следует учесть, что наличие дополнительного оборудования всегда влечет за собой его удорожание и увеличение срока окупаемости.

Работа системы отопления от такого насоса

Принцип работы самой установки был описан выше. В результате ее происходит нагрев теплоносителя во втором контуре теплообменника, который и будет служить в дальнейшем источником тепла для обогрева здания или отдельных помещений.

Классическим вариантом распределения нагретого теплоносителя является соединение теплообменника двумя отдельными линиями к распределительной гребенке и водонагревательному бойлеру. К гребенке в свою очередь подключаются отопительные приборы, теплые полы и другое оборудование. Такое распределение необходимо из-за различных режимов работы систем горячего водоснабжения и отопления.

Линейка тепловых насосов воздух-вода определяет мощности установок от 2 до 120 кВт, что позволяет выбрать оборудование для отопления и горячего водоснабжения жилого дома любой площади.

Режим подачи холодного воздуха

Конструкция тепловых насосов позволяет не только обогревать дом зимой, но и обеспечить подачу охлажденного воздуха в жаркие дни летом. Для этого циркуляция хладагента запускается по обратному циклу.

Однако, охлаждение отопительных приборов не обеспечит необходимый эффект поскольку опускающийся вниз холодный воздух не сможет создать комфортных условий по всему объему помещения.

Поэтому для того чтобы использовать установку воздух-вода для кондиционирования потребуется наличие обдуваемого вентилятором конвектора.

Кроме этого в циркуляционный контур дополнительно устанавливают 4-ходовой клапан, второй дроссельный клапан и 2 линии труб. При переключении клапана закрывается линия в направлении «зимнего» дросселя и открывается в сторону «летнего», и охлажденный теплоноситель подается на конвектор. Подогрев горячей воды так же будет отключен.

Стоимость такого усовершенствования с учетом дополнительного оборудования, материалов и работ может быть вполне сравнима со стоимостью кондиционера. Поэтому в большинстве случаев будет вполне разумным отказаться от эксплуатации в сплит-режиме, а просто купить климатическую установку.

Преимущества и недостатки

ДостоинстваНедостатки
экономически выгодный тип отопительного оборудования с минимально возможными капиталовложениями и эксплуатационными затратамисложную схему подключения для работы в режиме охлаждения воздуха
возможность одновременного обогрева помещений и приготовления горячей воды для хозяйственных нужднепропорциональный рост расхода электроэнергии при понижении наружной температуры
наличие высокотемпературных моделей, способных обеспечить стабильную работу теплых полов, фанкойлов и конвектороввероятная остановка отопления при температуре наружного воздуха ниже -25°C
высокую энергоэффективность оборудования на уровне А+++наличие шумового фона во время работы
возможность совместной работы с отопительными котламизависимость от стабильного электроснабжения.
автоматизированное управление оборудованием
простой монтаж и обслуживание
возможность работы на аккумулятор тепла позволяет более экономно расходовать электроэнергию с учетом тарифов по времени суток

Большинство моделей прекрасно работают до температуры наружного воздуха -15°C. При дальнейшем похолодании эффективность системы резко снижается. Это связано с такой технической характеристикой, как точка кипения хладагента.

Для наиболее распространенных марок она находится в пределах от -20°C до -35°C. При меньшей температуре воздуха хладагент перестает закипать в испарителе и работа системы прекращается.

Поэтому для жилых домов и коттеджей в холодной климатической зоне необходимо наличие дополнительного котла или камина.

Монтаж оборудования

Блок испарителя может быть установлен на опорах возле земли или на стене здания. Для защиты от шума работающего компрессора второй блок рекомендуется устанавливать в отдельном помещении, в подвале или на чердаке. При этом необходимо принимать рекомендуемое изготовителями расстояние между блоками не более 10 метров.

После этого блоки соединяются между собой металлопластиковыми или медными трубками в усиленной тепловой изоляции с фольгированной защитой. На последнем этапе монтажа ко второму контуру пластинчатого теплообменника подключают трубы системы отопления и подводят линию электроснабжения.

Популярные изготовители, обзор цен

Тепловые насосы воздух-вода на российском рынке продает более 20 различных компаний из Европы, Японии, Южной Кореи и Китая. В числе наиболее популярных можно назвать:

  • Mitsubishi Electric;
  • Cooper&Hunter;
  • Hitachi;
  • Panasonic.

Простые и доступные по цене, но менее комфортные и надежные бюджетные модели изготавливают Neoclima и Tosot.

Тепловые насосы концерна Mitsubishi Electric отличаются самым оптимальным соотношением цены, качества и удобного пользования. Внешние блоки работают без потери тепловой мощности до температуры -15°C и компания гарантирует подачу тепла при похолодании до -28°C. Стоимость  данного оборудования начинается от 10000 долларов.

Бытовая серия Zubadan этого же производителя и полупромышленная Mr.Slim включают широкий ряд моделей мощностью от 2,8 до 34,6 кВт. Варианты установки: подвесной, настенный или напольный. Используются для отопления жилых домов, офисов, небольших магазинов и мастерских.

Торговый бренд Cooper&Hunter представлен на рынке большим количеством моделей, входящих в 7 бытовых серий и 2 промышленные. Это американская компания, но ее производство расположено в Китае. Мощность предлагаемого оборудования от 2,5 до 112 кВт. Все установки:

  • рассчитаны на устойчивую эксплуатацию в диапазоне температур наружного воздуха от -25°C до +40°С (у некоторых моделей больше);
  • специально адаптированы для использования в северных странах Европы;
  • имеют специальную защиту от обмерзания;
  • нечувствительны к перепадам напряжения в диапазоне 110-260 Вольт;
  • отличаются малым уровнем шума во время работы;

При выборе теплового насоса не следует искать самый дешевый вариант, поскольку обычно такие установки имеют низкое качество изготовления слабые технические характеристики и непродолжительный срок эксплуатации. Однако и слишком высокая стоимость зачастую бывает не оправдана. Лучшее решение всегда где-то посередине.

Источник: https://vremya-stroiki.net/teplovoj-nasos-vozdux-voda-dlya-otopleniya-doma/

Подбираем тепловой насос воздух-вода – как сделать расчет и подобрать марку

Расчет теплового насоса воздух вода

Альтернативные источники энергии, способные заменить традиционный газ, твердое топливо, уже давно используются в государствах ЕС и Америки. В этих странах широкое применение получили так называемые «тепловые насосы», извлекающие энергию из земли, воздуха и воды. У каждой модели есть свои отличительные особенности, влияющие на рабочие параметры.

Тепловой насос воздух-вода, пользуется популярностью, благодаря простому подключению и эксплуатации, а также высокой экономичности и надежности.

Как работает тепловой насос системы воздух-вода

Устройство ТН воздух-вода мало чем отличается от обычного кондиционера или холодильника, только при условии работы обратного процесса или цикла Карно. Этот же принцип используется в климатической технике нового поколения. Кондиционеры, работающие на охлаждение, способны протапливать помещение, до тех пор, пока температура не понизится до -5°С.

Технические характеристики теплонасосов воздух-вода существенно улучшены, по сравнению с обычной климатической техникой. Обогрев помещения возможен до тех пор, пока температура не опустится до -15°С -25°С, а в некоторых моделях и до -32°С, включительно.

Если не вдаваться в технические подробности, принцип работы теплового насоса воздух-вода заключается в следующем:

  • Низкотемпературные тепловые насосы воздух – вода состоят из контура, по которому циркулирует фреон, испарителя, конденсатора и компрессора.
  • В испарителе создаются условия для преобразования фреона в газообразное состояние. При этом, поглощается тепло из окружающей среды.
  • Газ направляется в компрессор, где создается высокое давление, при котором фреон разогревается до температуры 120-125°С и впрыскивается в конденсатор.
  • Газ в конденсаторе преобразовывается в жидкость, которая отдает тепло.

Данный принцип действия используется во всех тепловых насосах, разница заключается только в различных источниках, для получения тепловой энергии: земля, вода, воздух и т.д.

Производительность теплонасосов напрямую связана с температурой окружающей среды. Эта особенность гарантирует возможность применения ТН воздух-вода в средней и южной полосе России.

Тепловой энергии, получаемой в процессе разогрева фреона, хватит, чтобы нагреть теплоноситель до 65°С.

Этой температуры более чем достаточно, для удовлетворения потребностей в горячем водоснабжении и отопления дома, радиаторной системой и теплыми полами.

Данный принцип работы использует низко потенциальную тепловую энергию, что ограничивает эксплуатацию устройства, внешними факторами. Оптимальная температура для теплонасоса воздух-вода, не ниже -10°С (в некоторых моделях 15-20°С).

Когда значение падает ниже нормы, работоспособность оборудования резко снижается. Чтобы справиться с данной проблемой, был разработан принцип работы теплового насоса воздух-вода совместно с другими источниками тепла.

Как это происходит на практике?

  • При падении температуры окружающей среды, насос начинает работать с постоянно увеличивающейся нагрузкой.
  • Когда показатели доходят до критичных отметок, включается резервный источник тепла: котел, работающий от электричества, жидкого и твердого топлива или газа, обеспечивающий повышение КПД.
  • Как только, температуры окружающей среды достаточно для полной производительности, котел отключается.

Контроль над включением-отключением отопительного оборудования осуществляется вручную или при помощи автоматики. Опыт эксплуатации показывает, что оптимально будет выполнить подключение в качестве резерва электрокотла.

Ограничение по температуре наружного воздуха делает нецелесообразным и даже невозможным установку воздушного теплонасоса для северных широт.

Как подобрать тепловой отопительный насос воздух-вода

Правильно выбрав тепловой насос для отопления дома воздух-вода, можно раз и навсегда решить вопрос обогрева жилых и промышленных помещений. Подбор подходящей тепловой станции выполняют следующим образом:

  • Тип корпуса – производители предлагают две базовых конструкции. Низкотемпературный моноблочный тепловой насос типа воздух-вода примечателен тем, что в помещении не устанавливается никакого оборудования, все необходимые узлы расположены на улице (либо в отдельном изолированном помещении). В дом входит только подающий и обратный трубопровод отопления.
    Сплит – системы, больше предназначены для бытового использования. Внешний блок устанавливается на улице и подключается к емкости накопителю. Разогретый фреон разогревает конденсатор, который методом косвенного нагрева передает тепло жидкости, используемой в качестве теплоносителя.
  • Функциональные возможности – некоторые модели предназначены для подключения только к системе водяного обогрева здания. Применение других теплонасосов воздух-вода, подходит для отопления и горячего водоснабжения.
  • Зависимость производительности от температуры окружающей среды – бытовые модели обычно ограничены температурой от +45°С до -15°С, можно приобрести оборудование, способное вырабатывать тепловую энергию даже при -25-32°С. Эффективность системы отопления дома с ТН воздух – вода, напрямую зависит от этого параметра.

Дополнительно, к параметрам при выборе, обращают внимание на мощность оборудования, компанию производителя, выпускающую теплонасос и себестоимость установки, включая проведение монтажных работ.

Как сделать расчет необходимой мощности ТН воздух-вода

Существует два понятия, предварительный (в первом приближении) и проектный расчёт мощности. Первый можно выполнить самостоятельно, второй делает специализированное учреждение. В первом приближении, на каждый квадратный метр рассчитывают 70 Вт мощности ТН. Дальнейшие расчеты выполняют следующим образом:

  1. Подсчитывают общую отапливаемую площадь.
  2. Умножают полученную сумму на 0,7.
  3. Полученный результат будет соответствовать минимально необходимой мощности оборудования.

Для отопления дома в 100 м², нужен тепловой насос мощности 7 кВт, 200 м² – 14 кВт и т.д.

Чтобы обеспечить максимальную экономичность отопления дома с помощью теплового насоса системы воздух-вода, потребуется грамотная проектная документация и квалифицированное выполнение монтажных работ.

Производители тепловых насосов отопления воздух-вода

Буквально 10 лет назад, на рынке предлагались всего несколько моделей тепловых насосов. Сегодня выбор стал намного больше. Ведущие немецкие производители, российские, японские и китайские компании, выпускают оборудование, с той или иной долей теплоэффективности.

Судя по отзывам покупателей, наиболее востребованными являются насосы следующих компаний:

  • Viessmann – более 30 лет занимается выпуском тепловых насосов. С тех пор, продукция компании существенно изменилась. Были учтены пожелания потребителей, внедрены новые технологии. В ТН Viessmann используется инновационная автоматика, полностью регулирующая весь процесс работы, оптимизирующая процесс обогрева, в согласии с погодными условиями.
  • Buderus – модели отличаются высокой производительностью. Предназначены для бытового и промышленного применения. Полностью соответствуют особенностям отечественной эксплуатации. В серии Buderus предлагаются насосы для обогрева площади до 500 м² и выше.
  • Stiebel Eltron – еще одна немецкая компания, пользующаяся неизменным спросом у отечественного потребителя. В качестве достоинств можно выделить большой ассортимент предлагаемого оборудования, функциональность устройств и возможность подбора по индивидуальным запросам. Модели Stiebel Eltron имеют высокий уровень СОР и отличаются экономичностью.
  • Heliotherm – австрийские теплонасосы, имеющие один из лучших показателей СОР среди всего термального оборудования. Имеют официальное представительство в РФ, что во многом облегчает монтаж, обслуживание систем и выполнение гарантийных обязательств. Теплонасосами Heliotherm оснащены более 15 000 различных объектов.

Стоимость установки ТН воздух-вода

Последние модели тепловых насосов обойдутся в 160-1200 тыс. руб. Цена варьируется, в зависимости от производителя. На стоимость сильно влияет «раскрученность» бренда. Китайские модели, имеют меньшую цену, но и уступают по надежности и показателям СОР.

Монтаж теплонасосов воздух-вода обычно входит в стоимость. Большинство производителей, дополнительно, бесплатно делают проект и предоставляют другие услуги по обслуживанию. Рассчитать полную стоимость, включая покупку ТН и его установку можно с помощью он-лайн калькуляторов.

Рекомендации и правила монтажа ТН воздух-вода

Теплонасосы воздух-вода устанавливаются в любом месте придомовой территории. Существуют общие правила относительно монтажа:

  • Расстояние до жилого дома от 2 до 20 м.
  • Минимальное расстояние до котельной, с которой агрегат соединяется несколькими трубами и электрическими кабелями.
  • В котельной располагают накопительную емкость, устанавливают циркуляционное оборудование.
  • Создается незначительный уровень шума при работе. Тем не менее, если планируется установить моноблок для внутреннего монтажа, для него стоит выделить отдельное звукоизолированное помещение.
  • Наружный блок выглядит как корпус кондиционера. Внизу расположены ножки для установки, а также настенные крепления.

В системе большинства моделей предусмотрена функция предотвращение замерзания. Поэтому, наружный блок не нуждается в утеплении.

Одно из наиболее распространенных решений, относительно эксплуатации теплового насоса, это использование системы для нагрева бассейнов. С помощью оборудования, осуществляется подогрев воды в летний период, а также отопление помещения зимой.

На сколько выгоден тепловой насос системы воздух-вода

Выгода использования тепловых насосов отопления воздух-вода, стала особенно очевидной, после появления СОР. Под этим термином скрывается коэффициент, сравнивающий необходимые затраты на электроэнергию, при отоплении тепловым насосом типа воздух-вода. На практике это означает следующее:

  • Для работы ТН требуется электричество. Напряжение нужно компрессору, нагоняющему давление в систему. СОР указывает, какое количество тепла было получено, благодаря потреблению электроэнергии в сутки.
  • Если СОР равен 3, значит, насос вырабатывает 3 кВт тепловой энергии на каждый кВт затраченного электричества.

Все, казалось бы, просто, если бы, не одно, но! Существует температурная зависимость насоса воздух-вода. При снижении температуры, теплоотдача существенно падает. Эффективность работы зимой снижается. Именно по этой причине, отзывы реальных владельцев о тепловых насосах системы воздух-вода с средней полосы России вразрез отличаются от тех же комментариев жителей северных широт.

Все недостатки эксплуатации теплонасосов воздух-вода, в основном сводятся именно к зависимости от внешних температурных факторов. Но это можно учесть при выборе модели, обращая внимание на параметр, указывающий нижний предел температуры для сохранения ТН работоспособности.

Перед решением о покупке, стоит прочитать несколько отзывов, показывающих преимущества и недостатки тепловых насосов, а также возможности и сферу применения оборудования.

Источник: https://AvtonomnoeTeplo.ru/altenergiya/149-teplovye-nasosy-vozduh-voda.html

Слесарю
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: